The famous explanation is the ball on a hill, which is useful, but I like to start with an atom with an excited electron. Due to coulomb’s force, the positively charged nucleus attracts the negatively charged electron. It really wants to fall closer to the nucleus. The ground state of an atom is when all the electrons are as close as possible. There are no open seats for electrons to fall into. The weird thing you might think is why does there have to be a seat, can’t it just move a little closer. Surely there aren’t so many electrons that they can’t even move, right? And the answer is yes, there is a lot of empty space in the atom, but only certain energy levels are stable for the electron
This is when I like to jump back to the ball on the hill example. If the hill has a small pocket on the wall. To the left is a small hump followed by a steep downhill and to the right is a steep uphill. Shure, you could place the ball halfway up the hill, but it won’t stay there because it’s too steep. However, this little pocket is stable. If you nudge it a little to either side, it rill roll back into the pocket. But if you nudge it a bit too far, it will roll over the little hump and down the steep slope to the next pocket it encounters, or the bottom of the hill. For atoms (and the Higg’s field), the bottom of the hill is the ground state. The lowest energy it can have.
Of course you already intuitively know that all things like to lose energy. The more energy you give something, the more it has to give away, and it will do so at the earliest possible moment. Lift a ball above your head and you have given it gravitational potential energy and it wants to fall back down to get rid of that energy. Put your foot on the gas in a car and you increase its kinetic energy, but as soon as you let off the gas, putting less energy into the system, the car loses speed to friction and air resistance.
The Higg’s field may not be in the bottom of the hill, the ground state. It might be on one of those pockets halfway up the wall. Little nudges don’t move it from the pocket, but a big enough nudge might. But here’s the crazy thing, even if it takes some energy to get over that hump, since the bottom of the hill is always lower than the pocket (false vacuums are always higher energy than the true vacuum), you will get out all that energy and then some on the way to the ground state. Which basically guarantees enough energy will be released to cause the next link in the chain to also get nudged out of it’s false vacuum. A chain reaction as link after link after link falls to the ground state, propagating out in all directions at the speed of light.
No analogy is perfect, but I think that’s good enough for eli5.
Latest Answers