How do ski jumpers NOT get fall damage?

420 viewsMathematicsOther

The distance they jump/the speed at which they fall seems like it would be impossible to land without falling flat on your face. There is obviously some cool physics going on, but please.

In: Mathematics

16 Answers

Anonymous 0 Comments

I am more interested in the learning curve, do they just put you at the top and tell you to fly and good luck?

Anonymous 0 Comments

To try and actually ELI5: 

Ski jumps arent about who can jump the highest. If you watch, you’ll notice they stay just a little bit off the ground as they jump the whole way down! 

Think about this : When you jump on flat ground, you go up and down, and stay where you landed. If you jump onto a slide, you’ll go down, but you’ll also go OUT toward the end of the slide. It makes you slide diagonally rather than straight down. 

Put these together – not being very high off the ground and landing on a slide makes the fall damage very small.

Anonymous 0 Comments

There’s a lot of skill involved in making sure you don’t land without falling flat on your face.

Part of that skill involves holding your body in such a way that you maximize lift, which includes holding the skis a certain way. The skis themselves are different from normal downshill skis – considerably wider and longer than normal. This gives them more control and makes it so that they’re more gliding than falling.

Another skill is learning how to land correctly. When executed properly, the landing is spread out longer to minimize the change in velocity (from hitting the ground).

Finally, ski jumpers land on a slope, not on a flat. Again, this serves to make it so that they lose less velocity when hitting the ground. Instead of abruptly stopping (which results in a very large change in velocity over a short time, which in turn gives a high force), they can maintain both their horizontal and vertical velocity – essentially, they’re still “falling” down the slope. And being in contact with the ground, they can then shed their velocity in a more controlled and drawn-out fashion, which minimizes the force they have to deal with.

To use an analogy: Falling a from a building is like driving your car straight into a building and using the building to stop your car. It doesn’t tend to end well.

Coming down from a ski jump is like driving up a hill and allowing the hill to slow you down before you finally hit the brakes at a stoplight.

Anonymous 0 Comments

It’s not the fall that kills you but the sudden stop. You’ll notice ski jumpers land on a downslope not flat ground. If they were to land on flat ground it would be like hitting a wall. Since the downslope roughly matches the trajectory of their fall and slowly flattens out, there is not sudden stop. The forces get converted from downward motion to forward speed.

Anonymous 0 Comments

The short answer is that force is a vector. So explaining this more ELI5, if you jumped from a high surface on to the ground, all of the force of gravity from you falling is returned right back up in to you. This is what causes the risk of injury to your feet, ankles, legs, knees is all of that force pushing back on those.

However ski jumpers don’t land on a flat surface, they are landing on a very sloped surface. So the force is much more in a horizontal direction rather than pure vertical. It should also be noted that where they land is covered with very loosely packed snow. This snow will also absorb that force and disperse it as they are landing.

Anonymous 0 Comments

Throw a ball directly at a wall and see how far it travels afterwards, i.e. how much of its momentum is conserved

Now throw a ball at a 45deg angle and see how far it travels afterwards, i.e. how much of its momentum is conserved

Now throw a ball at the smallest angle you can and see how far it travels afterwards, i.e. how much of its momentum is conserved

This is the basic idea. Ski jumpers aren’t just landing ANYWHERE, they are landing in a landing zone that is built at an angle to make the landing easier.

Same thing with mountain bike tricks and all of that other X games stuff – when you land at an angle like that, much of your momentum is conserved as FORWARD momentum in the direction you were (and still are) travelling.

The landing being on snow helps some (relative to concrete), and the large skis also help absorb some of the impact (they “spread” out the force of landing somewhat)