A stall occurs when you exceed the critical angle of attack, but apparently something called boundary layer separation is a part of that. So, does the boundary layer help generate lift? I get Bernoulli; I’ve read that the boundary layer forms around the airfoil because air has viscosity; I’ve read about the laminar flow, transition point, turbulent flow, etc.; but I don’t get the relationship between the boundary layer and stalls, specifically the relationship between boundary layer separation and stalls and if the boundary layer actually assists in generating lift.
Please explain this so a chimp can grasp it, and please try to explain it in a manner directed towards pilots. I’ll read an encyclopedia-length post if you take the time to type it.
​
Thank you.
In: 4
The shape of the wing is very important to creating lift.
Now think of what happens if you try to force your hand palm first through the water vs side first through the water. Side first, your hand will slip through the water and always remain in contact with water. Palm first and you will create a pocket of air behind your hand ( the water does not remain in contact with your hand.
When the boundary layer separates its like forcing your hand palm first through water. Rather than remaining smoothly in contact with the air over the whole wing, part of the wing creates a pocket of “messy air” that doesn’t follow the shape of the wing, which as we first said is very important to create lift.
Latest Answers