How exactly does an electrical circuit carry energy?

212 viewsOtherPhysics

How exactly does an electrical circuit carry energy?

I understand that particles (protons and electrons) have “charge”, and opposite charges attract. And that electrons supposedly migrate very slowly along wires, and as they do so this creates an “electromagnetic field”.

What exactly is this electromagnetic field? What does that mean?

And if the electrons are not carrying the energy, how does it work? How does a circuit make a lightbulb glow at the atomic level?

In: Physics

3 Answers

Anonymous 0 Comments

I’m going to address these out of order because the middle question is actually the hardest to answer.

>electrons supposedly migrate very slowly along wires

Electrons are slow, the wave is not. Passing current through a wire is kind of like pushing water through a hose. But the hose is not empty. The water is not starting at one end and moving all the way to the other. It’s more like pushing water into a hose that is already full of water. The water goes in one end, and the resulting wave of molecules bumping into each other makes the water at the other end come out almost instantaneously.

>And if the electrons are not carrying the energy, how does it work?

The electrons are not carrying the energy. Their movement IS the energy. The electrons jump from atom to atom until they encounter an obstacle they can’t get through. This is resistance. The charge differential is still pushing and pulling the electrons but the material impedes their movement. So they go apeshit and bounce around in all different directions. The resistant material gets hotter and begins to glow because so many electrons are being bounced around. The more the current has to struggle to get through the material, the more electrons are wasted, the more the material heats up.

>What exactly is this electromagnetic field?

An electromagnetic field is a physical field that occurs between electrically charged particles. Electromagnetic waves are emitted by electrically charged particles undergoing acceleration, and these waves can subsequently interact with other charged particles, exerting force on them. When one charged particle gets nudged by the electromagnetic force, the movement propagates to the next one, and the next one, and the next one. It’s kind of like a ripple travelling through water.

Okay, but what actually IS the electromagnetic force? What’s the thing making the charged particles move in the first place?

We don’t know.

Electromagnetic force is one of the four “fundamental forces.” Once you get to a fundamental force, you have reached bedrock. There’s nothing below it. We can measure the effect of the force, and we can observe the movement of particles resulting from the force, but we can’t explain how and why it happens.

You are viewing 1 out of 3 answers, click here to view all answers.