In a game of odds or evens, is it possible to have an advantage depending on the rules?

428 views

For those who are unaware (since I’m not sure how regional this is), a game of odds or evens works like this: a player calls “odd”, the other calls “even”, and then they simultaneously show each other their hands – usually just one hand per player – with a number of fingers held up (or no fingers, which counts as zero). The sum of those fingers will result in a number that is either odd or even, so one of the players wins.

I tried to research whether the game is always mathematically fair and I’ve found conflicting explanations. My question is which of these, if any, is correct:

**Explanation number one** is that it depends on the rules. If you play with one hand per player, there are six possible numbers (0 through 5), so between the two players you have 11 possible sums (0 through 10) but 36 possible combinations of fingers held up, many of which arrive at the same sum. 18 combinations are odd and 18 combinations are even, so this version of the game would supposedly be fair.

However, some versions of the game consider the sum of 0 to be a draw, and in that case, there are more valid odd combinations (18) than even combinations (17, since a 0 hand with a 0 hand no longer counts) in the probability pool. And if the players choose to use *both* hands each, the possible sums are 0 through 20 and so there is a total of 121 combinations with 61 being even, unless the zero is considered a draw, in which case it’s 60-60.

**Explanation number two** is that the rules *don’t* matter and the game is fair no matter what. According to this explanation, the results are ultimately binary: it’s either odd or even, so with the two players you have four possible combinations: an even hand with an even hand (the result is an even sum), odd with odd (the result is even), odd with even (the result is odd) and even with odd (the result is odd). So two possible even combinations, two possible odd combinations, giving each player a 50% chance no matter the amount of hands or whether or not a zero sum is considered a draw.

My question is: which explanation is correct, and if neither is, what is the explanation? I have the mathematical prowess of a concussed goldfish so I need some help with this one.

In: 7

8 Answers

Anonymous 0 Comments

This depends on what you assume about how the other player is choosing their numbers.

A. if you assume they play any number with equal probability, then first explanation is correct

B. second expalantion is correct if you assume other player first chooses odd or even with equal probability, then chooses a specific number to show. this is not same as option A, since using two hands gives you 6 odd numbers, and 5 even ones.

if you do not want to assume, then you could find Nash Equilibrium for two-handed game, but I am too lazy to do it now. If you want to try, NE with randomizing strategies requires either player to be indifferent between winning from any number. Also, this assumes that players are playing Nash equiliibrium, which would be plausible if they play that game for a long time, or give it a lot of thought.

PS Nash Equilibrium is probably strategy B, leading to second explanation.
But when people play such game IRL, they will try to guess what their opponent will do, or try to randomize through various psychological means (like going through numbers in sequence, or not having more than 3 evens in a row), which will deviate from Nash.

You are viewing 1 out of 8 answers, click here to view all answers.