In sci-fi with “spinning” ships to make gravity, how does someone drop something and it lands at their feet?

1.23K viewsOtherPhysics

This fogs my brain every time I watch one of these shows and I feel like maybe I’m completely misunderstanding the physics.

​

You’re in a “ring” ship. The ring spins. You’re standing on the inside of the ring so it takes you along with it, and the force created “pins” you to the floor, like a carnival ride. Ok, fine.

​

But that’s not gravity, and it’s not “down”. Gravity is acceleration, so what keeps the acceleration going in the ring ship is that you are constantly changing your angular momentum because you’re going in a circle. Ok, so when you let go of something, like a cup or a book, wouldn’t it go flying towards the floor at an angle? If you jumped wouldn’t you look like you rotated a little before you hit the ground, because you’d, for that moment, be continuing the momentum of your angular velocity from when you left the floor and the room would continue on it’s new, ever turning, course?

Wouldn’t it kind of feel like walking “uphill” one direction and “downhill” the other, with things sliding about as the room “changed” direction constantly?

Am I just COMPLETELY missing this idea and creating a cause and effect that doesn’t exist?

In: Physics

25 Answers

Anonymous 0 Comments

What you’re referring to is generally known as the Coriolis effect, and how noticeable it is ultimately relies on the size of the ship. If the spinning ring is relatively small, like the one shown in 2001 Space Odyssey for example, then it would be fairly easy to observe it in action, by throwing objects or running and jumping. If it was a huge ring, then it’s not like the effect would cease to exist but it would barely be noticeable, just like it exists on Earth which itself is spinning but is rarely noticeable.

You are viewing 1 out of 25 answers, click here to view all answers.