I ask this in relation to ” /(x/y) ” = ” *(y/x) ”
My mathematical ignorance does not allow me to perceive exactly what it is that confuses me about these manoeuvres and so perhaps my question is vague.
I have no difficulty with it as a technique; as something through which I can put an expression, and out at the other end the right result will appear. What I am trying to understand is *why it works*, contrasted with remembering it as a kind of magical spell.
​
**EDIT:**
It was very rewarding for me to read all of your comments. Thank you most kindly for enlightening me.
For those interested in the cause of my previous confusion:
The gaps in my understanding of going from y*x=z to y=z/x were definitions of the equal sign and division.
I can see now that I previously considered the = sign to mean «result» or «answer» in some sort of final sense, like a conclusion; I now see that it only states that this is equal to that.
Following this fundamental piece of knowledge, I can belatedly understand what an equation is. From there, via the definition of division as the opposite of multiplication, I can see that if I divide something while also multiplying it with the same number, these actions cancel each other out.
And so the magical spell between y*x=z and y=z/x is the logic above expressed mathematically as x/(y*x)=z/x.
In: 25
Main thing to understand is that you can add, subtract, multiple or divide an equation on both sideswith any constant, and the equality sign holds.
So when you go from y*x = z => z/x = y you are doing a few steps
First step is to divide both sides with x:
y*x/x =z/x
That cancels out to
y*1=z/x = y
and you get the equation. Remember that which side things are on in the equation sign doesn’t matter.
Latest Answers