Not really a ELI5 explanation, but the following is how I understand it.
In a classical computer, a 32-bit register can contain one of 2^32 different states at any given time. Each bit can be either 0 or 1, representing a single, specific state out of the possible 2^32 states.
In contrast, a quantum computer uses quantum bits, or q-bits, which can represent multiple states simultaneously due to the principle of superposition. The state of 32 q-bits is a complex linear combination of 2^32 different states. This means that a 32 q-bit register can hold all 2^32 states at once, with each state having a certain probability amplitude. The squares of these amplitudes’ magnitudes add up to one, ensuring proper normalization.
One unique property of quantum states is that they can undergo a global “phase shift,” where applying the same rotation to all the probability amplitudes doesn’t change the measurable state of the system.
Quantum “gates” manipulate the state of q-bits through operations that can entangle q-bits, create superpositions, and perform other transformations. These operations are fundamentally different from classical logic gates and can process an immense amount of information simultaneously. Simulating these quantum operations on a classical computer would require exponentially more resources, highlighting the efficiency and power of quantum computation.
Finally, at the end of a quantum computation, a measurement is performed. This collapses the superposition into one of the possible states, and the result is probabilistic, influenced by the probability amplitudes of the states (look up “Born’s rule”).
Latest Answers