Gas engines use a complex design to draw air and fuel into the cylinder block, and then ignite that to push the piston. This generates the power. But the efficiency depends on a lot of variables. The width and length of the cylinder, the weight, the timing of the valves (these control the timing of air and fuel that get into or out of the cylinder).
An engine like this has a lot of flaws. Typically, designers will choose a specific power band for which they will optimize the design of the engine. This depends on the type of vehicle, the weight, the expected work load. A truck engine will need different power output characteristics compared to a family SUV or a sports car.
So, for example, a Porsche roadster might have peak power at 7K RPM. But when stationary, the car will idle at 1K RPM. The engine is not optimized to run at that rpm, so it gradually increases the power it can make as it revs higher.
On the other hand, an electric motor has a battery, and a motor that spins depending on how much electricity is fed into it. There’s no other variable in the energy transformation process, so the torque is the same no matter what rpm the motor is spinning at.
Latest Answers