Why are spheres of higher dimensions smaller?

365 viewsMathematicsOther

The volume of spheres of the same diameter approaches zero as dimensionality approaches infinity, I intuitively don’t understand why.

In: Mathematics

3 Answers

Anonymous 0 Comments

Because you’re comparing apples and oranges. The issue is that we are using the same word, “volume” in a more generalized way, but in actuality the “volumes” of different dimensional spheres are measures of different things. It doesn’t make sense to say that they are smaller or larger than each other.

The easiest way to see this is with the “volume” of a 2-dimensional sphere (also known as a “circle”) and that of a 3-dimensional sphere (also known as a “sphere”).

Yes, if you calculate the “volume” of each, the magnitude of the sphere’s volume is smaller than that of the circle’s (given the same radius) but one isn’t “smaller” than the other because they are different units.

The circle’s volume, which we would more commonly call its area, is measured in square units whereas the sphere’s volume is measured in cube units. Think about this with real units: is 2 square meters smaller or larger than 1 cubic meter?

It’s a borderline nonsensical question because they are measuring different things: area vs volume.

In this same vein, the volumes of different dimensional spheres are measuring different things. We just say “volume” collectively for ease of description when we are talking about the concepts in general. For the same reason we just call them all “spheres” instead of inventing a new name for each higher dimensional shape.

You are viewing 1 out of 3 answers, click here to view all answers.