Why does matrix arithmetic work?

322 views

I know how to do matrix multiplication, cross, product, dot product, etc. But I don’t get why they work.

In: 2

4 Answers

Anonymous 0 Comments

They “work” because we all agreed on what each operation means so we could do them consistently. It’s like PEDMAS…you could totally do SAMPED and it *would* work if everyone did the same thing. You can redefine matrix operations any way you want and, as long as everyone does it the same way, it will “work”.

“Under the hood”, matrix arithmetic is just a shortcut to a big pile of linear equations. A dot product, by convention/agreement, is the equivalent to “if I project one vector onto this other vector, how long is it?”. You can do that with geometry, you can do that with trig, you can do that with a system of linear equations, you can do that with a matrix. The matrix operation is just a particular format of the linear equations.

Likewise, cross product is “if I have two vectors, what’s the vector that’s perpendicular to both and as long as their product?”.

For all the matrix operations they work because we *defined* them to be, “If I assume the columns of the matrix are vector coordinates, how do I manipulate those values to get the result I want based on the definition of the operation?”

If we all agreed that the *rows* of the matrix were equivalent to the vectors, we could still define matrix operations, they’d just be mechanically different than the ones we currently use.

You are viewing 1 out of 4 answers, click here to view all answers.