It all depends on what you’re splitting of fusing. In an atomic nucleus the particles they consist of are bound together by the Strong Nuclear Force. This force can only act on things that are very close together. With a small nucleus, all of the particles are close enough to each other that the Strong Nuclear Force will act on all of them at once. In a larger nucleus though, some of the particles are far enough apart that the Strong Nuclear Force on one side of the mass won’t affect those on the other side. Other forces, such as electrostatic repulsion and the Weak Force, begin to have an effect instead.
So, when you fuse two deuterium nuclei (hydrogen with a proton and neutron), you get some energy out of it because their particles are bound more closely. In something like Uranium-236, the particles are so weakly bound that they’ll quickly fly apart into Barium and Krypton and a bunch of free neutrons, again releasing a lot of energy.
Latest Answers