I ask this because when M1 Mac’s came I felt we were entering a new era of portable PCs: fast, lightweight and with a long awaited good battery life.
I just saw the announcement of the Snapdragon X Plus, which is looking like a response to the M chips, and I am seeing a lot of buzz around it, so I ask: what is so special about it?
In: Technology
The M chips aren’t actually _that_ revolutionary, and the M1 were tested in iPads and then in iPad logic boards crammed into Mac Mini cases before releasing to market.
Apple has been rolling its own silicon for the phones and tablets since 2010’s iPhone 4, and that at the time of M1’s launch to market represented over a decade of design experience within the arm64 architecture. Now, what are key design features that are handy in a computer but life-critical in a smartphone? Efficient performance. You only have a few watts to play with (in the case of a phone contemporary to the M1, the A14 Bionic SoC has a TDP of 6 W), so you’re going to make the best of every single milliwatt and energy-saving trick in the book while still retaining class-leading performance. iPhones consistently bench high compared to Droids of the same year. When you make the jump to a desktop and all of a sudden you have up to ten times as much power to play with (10W for M1 passive cooling, double that for M1 active cooling, 30W for M1 Pro, M1 Max about the same, and 60W TDP for the M1 Ultra), you can work ten times as hard. Or you can work as hard, but extremely efficiently, because you now have what’s effectively a phone processor doing the job of a desktop processor just as well.
The revolutionary part was attaching a keyboard and mouse to an ARM chip and making lots of software available at launch, either native arm64 or x64 running in a virtual wrapper. Microsoft sort of missed the boat on that latter part on its ARM powered tablets.
Latest Answers