How does Polaris (North Star) remain the center of star trail photos?

245 views

When you take a long exposure photo of the sky at night, the result is many circular trails of light surrounding a central star (Polaris). I still can’t wrap my head around how this seemingly remains a constant with all the different orbital motions (spin, rotation, tilt, wobble) that earth is continously going through.

I know it’s said that Polaris hasn’t *always* been the North Star or center of rotation in the sky, and that it supposedly shifts over many hundreds of years. But, how is it possible to remain constant for *any amoung of time* with us spinning around a wobbling axis at around 1000 MPH, while we rotate around the sun, and the entire solar system is rotating? Shouldn’t that mean there are three different axises of rotation and the center of any star trail photo would be changing daily if not minute-by-minute?

I have also heard that this phenomena remains constant because the stars are just *too far* away (trillions of miles) for the movement to be discernable/ noticable.. which makes even less sense to me. -If you attached a laser pointer to a gently rotating, wobbling object, and aim it at a very close surface, the amount of movent of the beam on the surface might be very minimal/ negligable. But, if you aim it at a very distant surface (trillions of miles away) the amount of movent will be exponentially more significant. The same should be true for a fixed camera lens perspective, especially over the course of hundreds of years.

So I guess what I’m saying is; how does our axis of spin continuously align with Polaris while that axis is also on a wobble, and that wobbling axis of earth is rotating within an also-rotating solar system, AND while everything in the cosmos is constantly expanding?

In: 3

7 Answers

Anonymous 0 Comments

When a wheel spins, what part of the wheel remains stationary?

The center.

To put this in more general terms, in a spinning perspective, anything sitting along the axis of rotation will not appear to move. We on Earth are a spinning perspective. The star happens to be in line with the axis of rotation.

You are viewing 1 out of 7 answers, click here to view all answers.