If every action has an equal and opposite reaction, how come an object dropped from a certain height doesn’t bounce back to the original height?

1.87K views

If every action has an equal and opposite reaction, how come an object dropped from a certain height doesn’t bounce back to the original height?

In: Physics

6 Answers

Anonymous 0 Comments

Some of the kinetic energy is converted into heat as the object’s material and that of the impacted surface flexes, during impact.

Some is converted into vibrations in the air.

There’s also the loss from air resistance, if the scenario isn’t performed in a vacuum. 🙂

I might be forgetting to list a few minor losses, but the pithy answer is that it’s more accurate to say, “for every action there is a set of reactions that total up to being equal, with the average vector thereof being the opposite direction from the action’s force.”

^(American high schools still teach the obsolete Newtonian model due to it being closer to the flawed intuitive model possessed by the human brain, and thus easier to learn. At least it isn’t Aristotle’s model!)

^( Edit: and, as pointed out, it is close enough for many things.)

^(Edit 2: Yeah, the USA isn’t the only nation that still teaches the Newtonian model in public school. My sidepoint was that the USA does, and uses an oversimplified version of it to get the idea across. This massive oversimplification gets stuck in the mind when the rest falls away…. leading to questions like this. 😉)

You are viewing 1 out of 6 answers, click here to view all answers.