if mathematically derivatives are the opposite of integrals, conceptually how is the area under a curve opposite to the slope of a tangent line?

633 views

if mathematically derivatives are the opposite of integrals, conceptually how is the area under a curve opposite to the slope of a tangent line?

In: 332

34 Answers

Anonymous 0 Comments

I like the intuition that area under a curve is like summing the areas of a bunch of rectangle under the curve, ie. area = height * width. Then notice that slope is “rise over run” ie. slope = height / width. Then of course multiplying and dividing by width are “opposites” in the sense that they undo each other.

This is why the notation for integrals is “∫ f(x) dx)” where we multiply by “dx” (a small width of x) and the notation for derivatives is “df(x)/dx” where we divide by dx.

In this way we can see that area is the “opposite” of slope in the same way multiplication is the opposite of division.

You are viewing 1 out of 34 answers, click here to view all answers.