Inside of battery-operated devices requiring the batteries to be stacked end-to-end, how come the batteries in the middle don’t quickly neutralized when the electrons from the negative cell flow through the positive?

984 views

For anyone that doesn’t know, and I hope I’m not relaying incorrect information, a regular voltaic battery like a Duracell or Energizer has a negatively charged end where electricity flows through the device it’s being used for, powering the device, before completing its circuit to the positively charged end and the charges cancelling out/neutralizing. The battery is dead when the there’s little to no charge difference between the cells.

When batteries are stacked end-to-end in like a flashlight, won’t the negatively charged ends in the middle flow through the positive end of the next battery? Why aren’t they more quickly neutralized then?

In: Physics

3 Answers

Anonymous 0 Comments

Electrons in a battery flow from negative to positive. So when the positive end of one battery connects to the negative end of another the electrons are flowing in the same direction so they add their voltages together and keep flowing.

Electricity is the flow of electrons and electrons are negatively charged. So a positive charge on a battery just means there are holes that can accept electrons. There isn’t actually any particle that is positively charged pushing out the positive end of a battery, it’s just missing electrons and ready to accept more.

You are viewing 1 out of 3 answers, click here to view all answers.